EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

Here are a couple of examples and problems to play with. This will help you to get a better grasp on the material we discuss in our class. Most exercises are very easy, so don't be frightened. If there is interest, we could have each week a separate discussion session for the exercises.

1 Solve the three equations

$$
\begin{aligned}
& x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0 \\
& x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0, \\
& x^{3} y^{\prime \prime \prime}+x y^{\prime}-y=0
\end{aligned}
$$

Note. The solutions will be simple functions. Always try to construct a whole basis, not just a single solution. If you get stuck, watch again the trailer of the course for a hint.

2 Find linear differential equations for

$$
\begin{aligned}
& \exp \left(\frac{1}{x}\right) \\
& \sqrt[3]{1+x^{2}} \\
& x^{2} \log (x)^{3}
\end{aligned}
$$

Then try to find the other solutions of the obtained equations.
3 (a) Consider the linear recursion

$$
c_{k}=\frac{k}{k+1} c_{k-1}-c_{k-2},
$$

with $c_{0}=1$ and $c_{1}=2$. Let $y=\sum_{k} c_{k} x^{k}$ be the associated generating series. Find a linear differential equation for y.
(b) One can prove that $\log (\log (x))$ does not satisfy a linear differential equation (that's not so easy, but maybe you have an idea). Find a non-linear equation (that's again easy).

4 Let $L y=0$ be a second order linear differential equation with coefficients in $\mathbb{C}[x]$, say,

$$
L=a_{2}(x) \partial^{2}+a_{1}(x) \partial+a_{0}(x)
$$

Now replace x by $\frac{1}{x}$. How does the equation change? Then show that this allows you to study the solutions of $L y=0$ at $x=\infty$ by the solutions of the transformed equation $\widetilde{L} y=$ at $x=0$.

Note. As x is replaced by $\frac{1}{x}$ also $\partial=\frac{d}{d x}$ and $\partial^{2}=\frac{d^{2}}{d x^{2}}$ will change. How?

